Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire.
نویسندگان
چکیده
Field observations made at Harvard Forest [Petersham, MA, U.S.A. (42 degrees 54' N, 72 degrees 18' W)] during early July 2002 show clear evidence of long-range transport of gaseous mercury (Hg) in a smoke plume from a series of boreal forest fires in northern Quebec. These measurements indicated significant and highly correlated increases in Hg and CO during the plume event. The Hg:CO emissions ratio determined from the data (8.61 x 10(-8) mol mol(-1)) was combined with previously published information on CO emissions and biomass burned to determine a mean area-based Hg emission flux density for boreal forest fires (1.5 g Hg ha(-1)), annual Hg emissions from Canadian forest fires (3.5 tonnes), and annual global Hg emissions from boreal forest fires (22.5 tonnes). Annual Hg emissions from boreal fires in Canada may equal 30% of annual Canadian anthropogenic emissions in an average fire year and could be as high as 100% during years of intense burning. The Hg:CO emissions ratio of this study was much lower than those reported for a temperate forest in Ontario and a pine/shrub vegetation in South Africa, suggesting that fire emission is dependent on biome/species and that any extrapolation from a single fire event to determine the global fire emission is speculative.
منابع مشابه
Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data
Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. Accor...
متن کاملVegetation Mortality within Natural Wildfire Events in the Western Canadian Boreal Forest: What Burns and Why?
Wildfires are a common disturbance event in the Canadian boreal forest. Within event boundaries, the level of vegetation mortality varies greatly. Understanding where surviving vegetation occurs within fire events and how this relates to pre-fire vegetation, topography, and fire weather can inform forest management decisions. We used pre-fire forest inventory data, digital elevation maps, and r...
متن کاملCarbon, Trace Gas, and Particulate Emissions from Wildfires in the Boreal Regions of North America
Large wildfires have a considerable impact on the atmospheric concentrations of CO2, CO, O3, NOx, and CH4 across North America. Carbon releases can be as high as 4 to 8 kg C-m per fire event. These emissions significantly affect concentrations far downwind. With funding from NASA, the Joint Fire Science Program, NSF, and the Canadian Government, US and Canadian researchers have been developing ...
متن کاملBoreal forest fire emissions in fresh Canadian smoke plumes : C 1 - C 10 volatile organic compounds ( VOCs ) , CO 2 , CO , NO 2 , NO , HCN and CH 3
Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas...
متن کاملBoreal Forest Fire Emissions in Fresh Canadian Smoke Plumes: C-1-C-10 Volatile Organic Compounds (Vocs), Co2, Co, No2, No, Hcn and Ch3Cn
Boreal regions comprise about 17 % of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic compounds (NMVOCs) using gas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 37 19 شماره
صفحات -
تاریخ انتشار 2003